NICKEL ALLOYS

WHAT ARE NICKEL ALLOYS?

Nickel will alloy readily with most metals such as copper, chromium, iron and molybdenum. The addition of nickel alters the properties of the resulting alloys that can be used to produce desirable characteristics such as outstanding resistance to corrosion, increase hightemperature scaling, exceptional strength and many other unique properties.

Categories	Grades	UNS	Bars	Round Bar Size Range (in mm)	Condition
	INCONEL 625	N06625	•	20.00 - 325.00	Solution Annealed
	INCONEL 718	N07718	•	25.40 - 152.40	Solution Annealed, Aged to MYS 120 KSI
	INCONEL 718 - 150 KSI	N07718	٠	16.00 - 177.80	Solution Annealed, Aged as per AMS 5663 to MYS 150 KSI
	INCONEL 925	N09925	•	15.88 - 254.00	Solution Annealed, Aged to MYS 110 KSI
NICKEL ALLOYS	ALLOY 20	N08020	٠	12.00 - 152.40	Hot rolled, Annealed
	MONEL 400	N04400	•	15.88 - 152.40	Hot Rolled and Stress Released Cold Drawn MYS 35 KSI
	MONEL R405	N04405	٠	22.23 - 57.15	Hot Rolled and Stress Released Cold Drawn MYS 50 KSI
	MONEL K500	N05500	•	15.88 - 190.00	Hot rolled, Annealed, Aged
	HASTELLOY C-276	N10276	٠	15.87 - 95.25	Hot rolled, Annealed

INCONEL 625 (UNS N06625)

Alloy 625 is a Nickel-Chromium-Molybdenum alloy with high strength and toughness from Cryogenic Temperatures up to 1500°F. It has excellent resistance to a variety of corrosive environments but yet possesses excellent fabricability resulting in it commonly being used in sea-water applications and in the field of aerospace. Some common uses for these are Aircraft ducting and exhaust systems, bellows, multiphase flow meters and many more.

			Typical	chemical composition	on, by % mass	
KEY PROPERTI	ES	Nidel	Chromium	Molybdenum	Iron	Nobium + Tantalum
Yield Strength	50 KSI Min					
Tensile Strength	110 KSI Min	Ni	Cr	Mo	Fe	Nb+Ta
Elongation	20% Min	58.00% Min	20.00 - 23.00%	8.00 - 10.00%	5.00% Max	3.15 - 4.15%
Reduction of Area	25% Min					
Hardness	35 HRC Max	Cobelt	Silicon	Manganese	Titanium	Silver
SPECIFICATION	NS	Co	Si	Mn	Ti	Ag
ASTM B446/B564 /ASME \$	38446/	1.00% Max	0.50% Max	0.50% Max	0.40% Max	0.40% Max
S8564 GRADE 1/2						
NACE MR0175/ISO15156-3	3	Carbon	Sulphur	Phosporous		
		-				
CONDITION		C	s	P		
Solution Annealed		0.10% Max	0.015% Max	0.015% Max		
		-			1	

INCONEL 718 (UNS N07718)

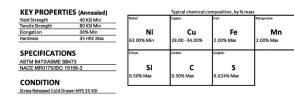
Alloy 718 is a high strength, corrosion resistant Nickel-Chromium alloy used for cryogenic temperatures up to long term service at 1200°F. Its ability to be fabricated and combined with goo tensile, fatigue, creep and rupture strength has resulted in its use in a wide range of applications. It is widely used in oil & gas and in the field of aerospace such as for sheet metal parts for aircrafts, land-based gas turbine engines and cryogenic tankage.

Below is the typical chemical composition for Alloy 718 that has been aged to MYS 120 KSI:

KEY PROPERT	IES (120 KSI)	Nickel	Chromium	Molybdenum	Iron	Nobium + Tantalum
Yield Strength	120 KSI Min					
Tensile Strength	150 KSI Min	Ni	Cr	Mo	Fe	Nb+Ta
Elongation	20% Min	50.00-55.00%	17.00%-21.00%	2.8% - 3.3%	Balance	4.75 - 5.50%
Reduction of Area	25% Min					
Hardness	40 HRC Max	Cobelt	Silicon	Manganese	Titarium	Carbon
SPECIFICATIO	NS		Si	Mn	ті	c
SPECIFICATIO	NS		si	Mn	ті	6
	NS	Co 1.00% Max	Si 0.35% Max	Mn 0.35% Max	Ti 0.80-1.15%	С 0.045% Мах
		1.00% Max	0.35% Max			C 0.045% Max
API 6A718 / 6ACRA						C 0.045% Max
API 6A718 / 6ACRA		1.00% Max Sulphur	0.35% Max			C 0.045% Max
API 6A718 / 6ACRA NACE MR0175/ISO15156	-3	1.00% Max	0.35% Max			C 0.045% Max
API 6A718 / 6ACRA NACE MR0175/ISO15156	-3 d to MYS 120 KSI	1.00% Max Sulphur	0.35% Max			C 0.045% Max

			Typical chemical c	composition, by % n	nass
KEY PROPERT		Nickel	Chromium	Iron	Molybdenum
Yield Strength Tensile Strength Elongation	110 KSI Min 140 KSI Min 18% Min	Ni 42.00-46.00%	Cr 19.50-22.50%	Fe 22.00% Min	Mo 2.5%-3.5%
Reduction of Area Hardness	25% Min 48 HRC Max	Copper	Titanium	Aluminium	Manganese
SPECIFICATIO API 6ACRA	NS	Cu 1.50-3.00%	Ti 1.90-2.40%	Al 0.10-0.50%	Mn 1.00% Max
NACE MR0175/ISO15156	-3	Silicon	Nobium & Tantalum	Carbon	Sulphur
CONDITION Solution Annealed, age	d to MYS 110 KSI	Si 0.50% Max	Nb+Ta 0.50% Max	C 0.03% Max	S 0.03% Max

INCONEL 925 (UNS N09925)


Alloy 925 is an age hardened Nickel-Iron-Chromium Alloy with additions of Molybdenum, Copper, Titanium and Aluminum. It has corrosion resistance similar to Alloy 825 but with higher strength obtained through age hardening. Alloy 925 is used in various applications requiring a combination of high strength and corrosion resistance. This is due to its properties of having good resistance to sulfide stress cracking and stress corrosion cracking in sour (H2S containing) crude oil and natural gas. It is commonly used for gas well components, valves and high strength requirement piping systems.

ALLOY 20 (UNS N08020)

Alloy 20 is a Nickel-Iron-Chromium austenitic alloy designed specifically to withstand sulfuric acid. Alloy 20 is an excellent option when chloride stress corrosion racking is an issue. It also has good resistance to pitting and crevice corrosion. Although originally designed for use in sulfuric acid related industries, Alloy 20 is now a popular choice for a wide variety of industries including the chemical, food, pharmaceutical, and plastics industries.

KEY PROPERTIES		Nickel	Chromium	Copper	Molybdenum	Mangariese
Yield Strength Tensile Strength	35 KSI Min 80 KSI Min	- Ni	Cr	Cu	Mo	Mn
Elongation	30% Min	32.00 - 38.00%	19.00 - 21.00%	3.00-4.00%	2.00 - 3.00%	2.00% Max
Reduction of Area	50% Min					
Hardness	32 HRC Max	Silicon	Nobium + Tantalum	Carbon	Phosporous	Sulphur
SPECIFICATIONS		Si	Nb+Ta	c	Р	s
ASTM B473/ASME SB473		Si 1.00% Max	Nb+Ta 8XC-1.00%	C 0.07% Max	P 0.045% Max	0.035% Max
ASTM B473/ASME SB473				1 0		
SPECIFICATIONS ASTM B473/ASME 8B473 NACE MR0175/ISO15156-3 CONDITION Hot Rolled, Annealed				1 0		

NICKEL ALLOYS

MONEL 400 (UNS N04400)

Monel 400 is a nickel-copper alloy that can be hardened only by cold working, it has high strength and toughness over a wide range of temperature usage while providing excellent resistance to corrosion. Monel 400 is widely used in the marine and chemical processing industries.

MONEL K500 (UNS N05500)

Monel K500 is a precipitation-hardenable Nickel-Copper alloy that combines the excellent corrosion resistance characteristics of Monel 400 with the added advantage of greater strength and hardness. These amplified properties, strength and hardness, con are obtained by adding aluminum and Hetre titanium to the nickel-copper base and by age hardening. Typical applications for Monel K500 products are oil well drill collars and instruments, pump shafts and impellers, non-magnetic housings, safety lifts and valves for oil and gas production.

Y PROPERTI	ES (Annealed)		Typical chemical c	omposition, by % m	1855	
d Strength	90 KSI Min	éduel .	Copper	Aluminium	Iron	Manganese
sile Strength	140 KSI Min					
ngation	20% Min	Ni	Cu	A	Fe	Mn
uction of Area	25% Min	53.00% Min	27.00 - 33.00%	2.30 - 3.15%	2.00% Max	1.50% Max
dness	35 HRC Max					
ECIFICATION M B865	NS	itanium Ti	Silicon	Carbon	Sulphur S	
ONDITION	ed harden	0.35 - 0.85%	0.50% Max	0.18% Max	0.010% Max	

			Typical chemical ci	mposition, by % mas	\$	
KEY PROPERT	IES (Annealed)	Nickel	Molybdenum	Chromium	Iron	Tungsten
Yield Strength	41 KSI Min				-	
Tensile Strength	100 KSI Min	Ni	Mo	Cr	Fe	w
Elongation	40% Min	Balance	15.00 - 17.00%	14.50% - 16.50%	4.00 - 7.00%	3.00-4.50%
Hardness	35 HRC Max					
		Cobelt	Manganese	Varadium	Silicon	Phosphorous
ASTM B564/B574		Co	Mn	v	Si	Р
ASTM B564/B574 ASME SB564/SB574						
SPECIFICATIC ASTM B564/B574 ASME SB564/SB574 NACE MR0175/ISO1		Co	Mn	v	Si	Р

HASTELLOY C-276 (UNS N10276)

Hastelloy C-276 is a Nickel-Molybdenum-Chromium Alloy with the addition of Tungsten. It has excellent corrosion resistance in a wide range of corrosive media and is especially resistant to pitting and crevice corrosion. It is resistant to the formation of grain boundary precipitates in the weld heat-affected zone, thus making it suitable for most chemical process application in an as welded condition.

Special Grade Bars 91